
Nicholas E. Navin, Ph.D.
Department of Genetics

Department of Bioinformatics

TA: Dr. Yong Wang

PERL
Bioinformatics

  PERL – ‘Practical Extraction and Reporting Language’
  Developed by Larry Wall in 1987 for UNIX operating

systems to overcome the limitations of the standard
UNIX tools

  Perl is a programming language that was designed for
quickly manipulating text files

  Perl became the first major scripting language for the
world wide web in the 1990’s and was used for most
forms online

  Unlike other programming languages (C, C++) perl is
an interpreted language, which means that the code
does not need to be compiled before running.

  Perl can be run on any computer system and is pre-
installed on all Apple OSX computers

  Perl scripts can easily be uploaded to servers or HPC
to run programs that process large data sets

UNIX Background and History

Larry Wall

  For this course we will write all of our
code in KOMODO EDIT, a graphical
user interface program, and then we will
run the code in UNIX (or DOS on PCs)

  Komodo EDIT provides real-time
feedback if you make errors while writing
the code

  Komodo EDIT is an open source editor
that is developed by Activestate and can
be downloaded for free for APPLE or PC
computers:
http://www.activestate.com/komodo-edit

  Go ahead and download and install the
application now

Graphical Interface for Perl Programming

Komodo Edit, a graphical
interface for editing perl code

Anatomy of a Simple Perl Program

#!/usr/bin/perl

#comment line

print "Hello Class! \n” ;

Header line tells Perl
where the binary
application is located

Tells computer
to print the
subsequent
text to the
screen

Text in
quotes will
be printed
to the
screen

\n is a
newline
character
that will
start a new
line

Semicolon is
required at the
end of every
line in Perl

hash indicates
comments, this line will
not be interpreted by Perl

Data Types in Perl

  Scalars $
  Arrays @
  Hashes %

Scalars store integer numbers, floats (decimals numbers) and
strings (characters or words)

Arrays are vectors that store linear series of scalar data. They
can be indexed using numbers

Hashes store collections of data that can be indexed using
words or characters

Perl has 3 data types:

Scalar Variables

$float = 2.7;

$integer = 200;

$string = “hello everybody”;

print $float;
print $integer;
Print $string;

This is a float variable that can
contain decimals

Print the values out to
the screen

  Scalar Variables are used to store data
  They are declared using the $ sign followed by a name of the

variable, and an equal sign to assign the value
  In most computer languages you must declare each variables as an

integer value, float or string, but Perl automatically determines the
data type for you

This is an integer value

This is a string which can
contain characters and words

Arrays

@array = (8 , 9 , 3 , 4, 1.99, “chr”, “cat, “dog”);

$length = @array;

print @array;

print $array[0];
print $array[5];

print $length;

Initialize an array
with some data

Print the values out to
the screen

  Arrays are vectors that store a series of data
  Any scalar variable can be stored in an array (integers, floats or strings)

Determine the
length of the array

Print all contents of the array

0 1 2 3 4 5 6 7

8 9 3 4 1.99 chr cat dog

Index

Print the array length out
to the screen

Hash Variables

%hash= (“dec”, 7.22, “animal”, “cat”, “num”, 9, “gem”, “red”,
“animal”, “dog”, “insect”, “ant”, “num2”, 18, “dna”, “ATG”);

Print $hash{“gem”};

Print $hash{“insect”};

Print $hash{“DNA”};

Initialize a
hash with
some data

  Hashes data collections that can be indexed with keys (not numbers)
  Hashes are initialized with the % character, followed by a key and value

Print the key values of several
hash variables

Dec animal num gem animal insect num2 dna

7.22 cat 9 red dog ant 18 ATG

Hash Keys

Mathematical Operators

$add = 15 + 22;

$sub = 87.43 – 7.43;

$mul = 87 * 54;

$pow = 2 ** 10;

$mod = 10 % 7;

$inc = 5;
$inc++;

$dec = 5;
$dec--;

  Mathematical operators can be performed on any integer or float
scalar variables

Operator Operation
+ addition
- subtraction
* multiplication
** exponential
/ division
% modulus
++ increment
-- decrement

Logical Operators

$false = 0;
$true = 1;

$ans = !$true;

$ans = $true && $true;
$ans = $true && $false;
$ans = $false && $false;

$ans = $true || $true;
$ans = $true || $false;
$ans = $false || $false;

  Logical operators are used to evaluate expression
  In computer science 0 = false, and 1 = true

Operator Operation
&& AND
|| OR
! NOT

FALSE

TRUE
FALSE
FALSE

TRUE
TRUE
FALSE

Numerical Comparators

$five = 5;
$ten = 10;

$ans = ($five == $five);
$ans = ($five == $ten);
$ans = ($five != $five);
$ans = ($five != $ten);

$ans = ($five < $ten);
$ans = ($five >= $ten);

  These operators allow comparisons of numerical values
  They return a true (1) or false (0) value when the test is performed

TRUE
FALSE
FALSE
TRUE

TRUE
FALSE

Operator Test
== equality
!= inequality
> Greater than
< Less than
>= Greater than

Equal to
<= Less than

Equal to

Strings

$dna1 = “AAAATATAATTT”;
$dna2 = “CCCCGCGCGC”;

$combine = $dna1.$dna2;
$len_dna1 = length($dna1); 12
$low_dna1 = lc($dna1); aaaatataattt
$index = index($dna1, “TTT”); 9
$subdna = substr($dna1, 5, 4); ATAA

  Strings are characters or words that are declared as scalars $

Operator Test
$string1.$string2 concatenate
length($string) Find length of a string
lc($string) Convert string to lowercase
uc($string Convert string to uppercase
Index($string1, $string2) Find location of string1 in string2
substr($string, offset, length) Find a substring in a string

AAAATATAATTTCCCCGCGCGC

String Matching with Regular Expression

$dna1 = “GAAATTTTAA”;

$dna1 =~ m/TTTT/g
$dna1 =~ m/AT+TA/g
$dna1 =~ m/AT?TA/g
$dna1 =~ m/^G/g

$dna1 =~ s/TTTT/CCCC/
$dna1 =~ s/T//g GAAAAA
$dna1 =~ s/[G|T]A/CC/g CCAATTTCCA

  Regular Expression is a powerful tool in Perl for matching strings

command function
$string =~ m/pattern/g Match pattern in string, return true or false
$string =~s/pattern/replace/g Replace pattern in string

RegEx Test
+ Can be any

number of
characters

? Single character
^ Start of line
$ End of line
[A|B|c] Subset of

characters
[A-E] Series of Letters

TRUE
TRUE
FALSE
TRUE

GAAACCCCAA

Conditional IF/ELSE Statements

$mendel = “monk”;

if ($mendel eq “monk”)
 { print “mendel is a monk”;}
if ($mendel eq “acrobat”)
 { print “mendel is an acrobat”;}

if ($mendel eq “acrobat”)
 { print “mendel is an acrobat”;}
else
 {print “mendel is a monk”;}

  The IF operator in Perl will evaluate a statement and only execute a command if the
statement is TRUE

 If (test-expression) { command to execute if true }

  Optionally, you can add an ELSE statement else { execute if expression is false }

TRUE
Mendel is a monk

FALSE

Mendel is a
monk

FOR Loops

$up = 10;
$down = 10;

for($i =0; $i<10; $i++)
{
 $up++;
 $down--;

 print “$up \n”;
 print “$down \n”;
}

  The FOR loop will executed a command a specified number of times

  The format is:
 for (initializer, condition, increment)
 { command statement }

up down

11 9
12 8
13  7
14  6
15  5
16  4
17  3
18  2
19  1
20  0

i

0
1
2
3
4
5
6
7
8
9

WHILE / UNTIL Loops

$num = 0;

while($num < 10)
{
 $num++;
 print $num;
}

until($num == 10)
{
 $num++;
 print $num;
}

  While and Until loops will continue to loop indefinitely until a condition is met in
which the program can exit the loop

while/unless (condition) { command statement }

  While loops assume a condition is TRUE and exits when it becomes FALSE
  Unless loops assume a condition is FALSE and exit when it becomes TRUE

OUTPUT

1
2
3
4
5
6
7
8
9

FALSE

TRUE

Foreach element in an Array

@arr = (5, 10, 15, 20, 25, 30, 35, 40, 45)

foreach $val(@arr)
{
 @arr[$val] = @arr[$val]+0.5;
 print “@arr[$val] \n”;
}

  Foreach is a special command in Perl that allows you to traverse all elements
within an array, similar to a for loop, but using less code

  The limitation is that FOREACH does not keep track of the index

OUTPUT

5.5
10.5
15.5
20.5
25.5
30.5
35.5
40.5
45.5

File Input

$infile= $ARGV[0];

Open(TXT, “<$infile”);

@text = <TXT>;
print “$text[2]”;

close(TXT)

  Perl has commands for reading in and writing out text files
  @ARGV is an array that takes input when the program is run
  To input the filename into the program, you run the program followed by the

name of the input filename
  Ex.

einstein.txt

Great spirits have
always encountered
violent opposition
from mediocre minds

-albert einstein

Output:
violent opposition

	 perl	 program.pl	 einstein.txt	

File Output

$infile= $ARGV[0];
$outfile = $ARGV[1];

Open(TXT, “<$infile”);
Open(OUT, “>$outfile”);

@text = <TXT>;

print OUT “$text[2]”;

close(TXT)

  @ARGV can both input and output file names
  Ex.

einstein.txt

Great spirits have
always encountered
violent opposition
from mediocre minds

-albert einstein

violent opposition

output.txt

	 perl	 program.pl	 einstein.txt	 output.txt	

Subfunctions

#!/usr/bin/perl

$var = 10;
$result = &calculation($var);
Print $result;

sub calculation
{
 $num = $_[0] * 66;
 return($num);
}

  When code becomes long, it is often advantageous to break the code down into
subfunctions (sub), which are executed using the & character

  Variables can be passed to the subfunction, and returned with the return
command

  Within the subfunction the $_[0] syntax is used to access passed variables

OUTPUT
660

The workshop for today can be found by directing your web browser to this URL

http://www.navinlab.com/bioperl

Follow the instructions on the website to complete the workshops and don’t be
afraid to ask for help

PERL Bioinformatics Workshop

Note: This is a long workshop and it is very unlikely that you will be able
to finish it during the class

Please finish all sections as homework before the next class, the website
can be accessed from anywhere

PS The UNIX workshop from last week has been moved to:

http://www.navinlab.com/biounix

